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Abstract
The quasistationary spreading of a circular liquid drop on a solid substrate typically obeys the
so-called Tanner law, with the instantaneous base radius R(t) growing with time as
R ∼ t1/10—an effect of the dominant role of capillary forces for a small-sized droplet.
However, for droplets of nematic liquid crystals, a faster spreading law sets in at long times, so
that R ∼ tα with α significantly larger than the Tanner exponent 1/10. In the framework of the
thin film model (or lubrication approximation), we describe this ‘acceleration’ as a transition to
a qualitatively different spreading regime driven by a strong substrate–liquid interaction specific
to nematics (antagonistic anchoring at the interfaces). The numerical solution of the thin film
equation agrees well with the available experimental data for nematics, even though the
non-Newtonian rheology has yet to be taken into account. Thus we complement the theory of
spreading with a post-Tanner stage, noting that the spreading process can be expected to cross
over from the usual capillarity-dominated stage to a regime where the whole reservoir becomes
a diffusive film in the sense of Derjaguin.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The spreading of liquid drops and films on a solid surface
can be described by universal, ‘macroscopic’ laws [1] as
soon as the thickness of the drop or film exceeds a few
tens of nanometers. One such law is the so-called Tanner
law, characteristic of the spontaneous spreading of small non-
volatile drops on a flat substrate in a situation of complete
wetting (see figure 1). After an initial transient regime,
the base radius R of such a drop grows as R ∼ t1/10.
The law has been derived analytically [2–4] and confirmed
experimentally on many accounts [3, 5–7]. The fundamental
argument is that the hydrodynamics in the bulk of a drop
are driven by capillary forces alone, which directly yields
R ∼ t1/10 assuming a self-similar shape for the bulk, in
the lubrication approximation [2, 3]. Alternatively, the trend
can be regarded as a competition between the hydrodynamic
dissipation (primarily in the contact line region of the drop)
and an unbalanced capillary force [1, 4, 8, 9].

The Tanner law is quite robust and typically offers an
accurate description of the life of a droplet—which spans
a few hours for liquids with moderate surface tensions and
viscosities—apart from initial and final transients. The
initial transient corresponds, e.g., to the deposit of the
droplet on the substrate, and lasts less than a second for
regular liquids. As for the final state of spreading, for
non-volatile droplets it is either a molecular film or a flat,
bounded structure—a ‘mesoscopic’ pancake [1, 10–12]—
which may be more favorable energetically than a molecular
film. Pancakes occur when short-range substrate interactions
promote dewetting, even though the overall situation is that
of complete wetting [13]: although not very common, such
structures have been observed experimentally [14]. The
existence of a limiting configuration, with a finite value for the
base radius R, implies that the late-time spreading dynamics
typically slow down with respect to the Tanner law.

By contrast to the trend of arrested spreading, it has
recently been observed that the Tanner stage R ∼ t1/10 can

0953-8984/09/464134+09$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/46/464134
mailto:mechkov@lptmc.jussieu.fr
mailto:anne-marie.cazabat@lps.ens.fr
mailto:oshanin@lptmc.jussieu.fr
http://stacks.iop.org/JPhysCM/21/464134


J. Phys.: Condens. Matter 21 (2009) 464134 S Mechkov et al

Figure 1. Cross-section of a circular droplet spreading in a situation
of complete wetting (cartoon, color online). See section 2.1 for
details.

be followed by a faster spreading law R ∼ tα , with α >

1/10. Specifically, for spontaneously spreading nematic liquid
crystals [15, 16], the value of α was found to be nearly twice as
large as the exponent αTanner = 0.1 characterizing the Tanner
law, with α = 0.2 [15] and α = 0.19 [16]. A more thorough
analysis of the data suggests that the acceleration does not stop
at α = 0.2: values as high as α = 0.3 can be observed at the
end of the experiment. This ‘accelerating’ trend is apparently
in conflict with the notion of a Tanner stage terminated by
the onset of a molecular film or equilibrium pancake, and its
physical origin has yet to be clarified.

We have already attempted a qualitative explanation of
this post-Tanner trend in a macroscopic framework [17]. In
the present paper, our goal is to account for the acceleration
quantitatively and for this purpose we resort to the well-
accepted thin film model (TFM). Analyzing the thin film
equation (TFE) we see that at late spreading times the
disjoining pressure dominates capillary effects. Then the local
thickness h(r, t) (see figure 1) obeys a diffusion equation,
i.e., the whole droplet effectively becomes a diffusive film in
the sense of Derjaguin [13]; the corresponding base radius
R grows as R ∼ t1/2. Thus the experimentally observed
transition from Tanner’s law to power laws R ∼ tα with
α ≈ 0.2 [15, 16] in fact seems to be part of a crossover to a
much faster spreading law than expected previously. In order
to validate this observation we integrate the TFE numerically,
extract relevant observables and compare their evolution to the
experimental data. We find the general trend illustrated by
the ‘numerical spreading’ to be in good agreement with the
spreading observed for nematic droplets in [15, 16]. However,
our model has yet to take into account the typically non-
Newtonian rheology of nematic liquid crystals. Our work in
progress will address this effect in separate publications. The
macroscopic interpretation of the acceleration in terms of a
negative line tension is also provided elsewhere [17].

Our paper is organized as follows. In section 2 we give an
overview of our system of interest and summarize previously
attempted explanations for its abnormal spreading behavior.
Section 3 features a brief derivation of the thin film equation
and presents key analytical results that are directly relevant
to the problem of nematic droplets. Section 4 focuses on
key properties of our numerical spreading process (essentially
a brute-force solution of the TFE), which is then compared
quantitatively with physical experimental data in section 5.
We conclude in section 6, relating our results to alternative
concepts and providing outlook into our future work.

2. Overview of the problem

2.1. Anatomy of a spreading droplet: macroscopic versus
mesoscopic

Figure 1 represents the quasistationary state of a spreading
droplet, which is composed of: a ‘macroscopic’ liquid
drop where shear is small and viscous forces are balanced
primarily by variations of capillary Laplace pressure; a
‘mesoscopic’ part subject to large shear, where viscous forces
are balanced primarily by variations of disjoining pressure; a
‘microscopic’ region featuring molecular precursor layers and
a dry substrate [18, 19]. The relative sizes of these regions
are not up to scale: the main purpose of figure 1 is to clearly
distinguish the apparent contact line (typically inferred from
the inflection point of the profile h(r, t) at a given time t) from
the ‘real’ contact line, governed by microscopic phenomena.

Most analyses assume that the macroscopic and meso-
scopic scales are well-separated, i.e., that the bulk of the drop is
much wider than the mesoscopic ‘foot’. Thus the bulk is well
approximated by a thin spherical cap with base radius R(t),
contact angle θ(t) � 1 and nearly constant volume

Vcap = π

4
R3θ, (1)

i.e., it is practically in equilibrium at constant volume Vcap

and instantaneous base radius R(t). In this approximation it
is also customary to assimilate R and θ with their respective
estimates inferred from the inflection point of h(r, t), Rinflection

and θinflection (see figure 1), which can be obtained through
optical observation of the apparent contact line [15, 16].
More immediately, these same optical experiments yield the
location of the microscopic contact line (the characteristic
thickness of which is 30 nm) and, e.g., R300 nm(t) such that
h(R300 nm, t) = 300 nm (see figures 2 and 4(a)). These
measurements indicate that the length of the mesoscopic film
ahead of the apparent contact line grows to millimetric sizes
and becomes comparable with R at the end of the experiment.
At this point the assumption of well-separated scales is clearly
broken, and the macroscopic volume Vcap is significantly lower
than the total volume

V = 2π

∫ ∞

0
h(r, t)r dr. (2)

2.2. Post-Tanner spreading laws: experimental evidence and
tentative explanations

By contrast with previous evidence of Tanner’s law, recent
experimental studies of spontaneous spreading of nematic
liquid crystals on hydrophilic [15] or hydrophobic [16]
substrates revealed, after a transient Tanner stage, a surprising
‘acceleration’ (actually a spreading process that ‘slows down
more slowly’ than the Tanner law). Figure 2 plots the relevant
observables for one spreading experiment. The base radius R
and contact angle θ were reportedly inferred from the inflection
point of the thickness profile (see figure 1), although in fact
the main observables were R30 nm and θaveraged (see figure 4(a))
rather than Rinflection and θinflection. Initially [15] it was noted
that Tanner’s law crossed over to R ∼ tα with α ≈ 0.2.
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Figure 2. Overview of the ‘accelerating’ trend for a single spreading
experiment (cyanobiphenyl 5CB droplet on silicon wafer). The
quantities observed are R30 nm (microscopic contact line; small dots,
red online), R300 nm (second interference fringe; big dots, blue online)
and θaveraged (slope averaged over 25 interference fringes; crosses). At
t > 200 s the plot reveals the existence and growth of a large
mesoscopic ‘foot’ at the edge of the droplet, comparable in size to the
base radius (see figures 1 and 4(a)). It is also clear that both observed
radii significantly deviate from Tanner’s law R ∼ t1/10 and undergo a
transient ‘acceleration’, past both the R ∼ t1/5 and ∼ t3/10 power
laws. The volume V of the droplet was not measured directly but it
can be estimated as V = 1.236 × 10−1 mm3 (see sections 4.4 and 5).

It was also realized (see figure 4(b) in [15]) that the Tanner
relation θ3 ∼ Ca (where Ca ≡ η

σ
dR
dt is the capillary number)

does not hold for late spreading times: for small θ and Ca
one has θ ∼ Ca0.75. The latter relation, together with the
volume conservation condition R3θ ∼ V , is consistent with
R ∼ t0.2. Similar results were reported for spreading on
hydrophobic substrates (see figure 6 in [16]), with θ ∼ Ca0.7

and R ∼ t0.19.
The conclusions from these results are as follows. On one

hand [15], direct estimates of α through R(t) are consistent
with estimates via θ(Ca), which apparently validates the
hypothesis of an approximating spherical cap of constant
volume (although the experimental data [15] offers no direct
evidence for this). On the other hand, α is found to be
significantly larger than the Tanner exponent αTanner = 0.1.
This signifies that some unknown factor, other than the surface
tension, comes into play. Moreover, similar values of α

were obtained for different kinds of substrates [15, 16], which
suggests that the acceleration is a robust effect rather than
an artifact, and an intrinsic feature of nematic droplets. One
should also note that the experiment in [16] does not fully
capture the post-Tanner transient and that exponents as high
as α ≈ 0.3 are observed at late times (see figure 2).

Several qualitative arguments come to mind, which may or
may not explain the reported acceleration. First of all, nematic
crystals are known to have a non-Newtonian, shear-thinning
rheology [20, 21]. Shear thinning affects the flow pattern and
the dissipation rates and thus modifies the spreading dynamics,
but it is not clear a priori whether the actual dynamics will be
faster or slower than Tanner’s power laws.

A detailed analysis of the contact line dynamics in the
framework of the thin film model [22] shows that characteristic
shear rates in the capillary wedge and in the mesoscopic
precursor decrease as the contact line slows down, and thus
for a non-Newtonian fluid the effective viscosity will increase
with time. This corresponds to a modified spreading law
R ∼ tα with α < 1/10. Numerical experiments were
carried out [23] and confirmed α < 1/10 for shear-thinning
fluids and α > 1/10 for shear-thickening fluids. Thus the
dominant effect from shear thinning is that the spreading is
slower than predicted by Tanner’s law, and we must seek
another mechanism to explain the ‘acceleration’ observed for
5CB droplets.

Among other factors that could be responsible for an
acceleration of spreading, we should also cite: (a) slippage
at the substrate [24]; (b) somewhat counterintuitively, densely
distributed roughness, which for small or zero contact angles
causes wicking and ‘enhances’ the property of complete
wetting [25]. Unfortunately, we must discard both these
effects as possible causes of the observed acceleration in
the case of our nematic droplets. First, slip has been
shown to cause a logarithmically small contribution to the
macroscopic spreading laws [24]; the acceleration observed
in [15, 16] looks qualitatively different from a minor effect due
to slip. As for roughness, the nematic droplets may encounter
some anchoring defects on hydrophilic substrates [15], but
hydrophobic substrates in [16] are definitely free of either
chemical defects or topographic roughness; thus the consistent
acceleration observed in both cases is not likely to be related to
the ‘superwetting’ properties of rough substrates.

Finally, a very tempting approach is to describe the (non-
volatile) system in terms of its total free energy. The 1985
review by de Gennes [1] has explained Tanner’s law in terms
of an effective driving force (derived from the instantaneous
free energy). The work of the driving force is balanced
by dissipation, primarily hydrodynamic dissipation in the
macroscopic ‘wedge’ and mesoscopic ‘foot’ in the vicinity of
the apparent contact line. The assumptions of this approach can
be challenged by hypothesizing incomplete dissipation in the
foot/precursor [15] or by introducing the concept of dynamic
line tension, which contributes to the unbalanced Young force
and plays a dominant role at long spreading times [17].

We note, however, that line tension as an equilibrium
concept is quite subtle [26, 27] and its generalization to a
quasistationary situation should not be taken lightly. It is
also hard to derive a consistent set of correction terms for
the hydrodynamic dissipation. More generally, the notion
of a driving force acting on the edge of a macroscopic,
capillary drop—this notion breaks down when the size of the
mesoscopic region (‘foot’) becomes comparable to that of the
bulk of the droplet, which is apparently the case during the
reported acceleration (this is indicated, e.g., by the evolution
of R30 nm and R300 nm on figure 2). This prompts us to describe
the spreading droplet in a framework that resolves mesoscopic
regions and does not use macroscopic approximations—the
thin film model.
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3. Thin film equation: presentation and analytical
results

The thin film model (TFM)—related to both the ‘interface
displacement model’ and the ‘lubrication approximation’—is a
continuum representation of the spreading dynamics, suitable
for the study of thin films. While it may not accurately describe
the spreading dynamics at molecular film thicknesses (see
section 4.1), it is believed to work quite well for mesoscopic
thicknesses, i.e., above several tens of nanometers. As
opposed to macroscopic frameworks, the TFM accurately
resolves quantities that would otherwise remain empirical,
e.g., functionals of the thickness profiles in the vicinity of
the apparent contact line and in the mesoscopic ‘foot’ of a
droplet. Notably, Tanner’s law was consistently derived in
the framework of the TFM by Voinov [2], Tanner [3] and de
Gennes [1, 4]. Numerous authors have since used the TFM
to validate, refine, and generalize the features of advancing
contact lines and, by extension, the spreading dynamics of
droplets [28–30].

3.1. Thin film model as applied to nematic droplets

At the core of the framework is the thin film equation (TFE).
The simplest expression of the TFE is for a Newtonian fluid
with no slip at the substrate, in the approximation of small
thickness gradients. In the following we briefly derive a TFE
for nematic droplets.

We consider a quasistationary film of heterogeneous
thickness h(x, y) covering a homogeneous, flat substrate.
Assuming that local equilibrium is achieved for all (x, y)

and that the lateral flows in the film have negligible inertia
(low Reynolds number), we can write the following energy
functional:

E[h] =
∫ ∫ [

σ + σSL + σ

2
(∇h)2 + �(h)

]
dx dy. (3)

Here σ and σSL are the nominal surface energies of a free
interface and of a solid–liquid interface, respectively, whereas
�(h) is an effective interface potential acting as a correction
to σ + σSL due to the fact that h is finite. As for the
excess energy due to the curvature of the free interface, it is
well approximated with σ

2

∫ ∫
(∇h)2 dx dy in the small-slope

approximation |∇h| � 1. It is common to neglect hydrostatic
contributions to (3) in situations of complete wetting [1, 30].

Considering E[h] under volume-preserving variations of
h, the quasistationary internal pressure p(x, y) is found to be
of the intuitive form

p = −σ�h − 	(h), (4)

which is a combination of the typical ‘capillary’ Laplace
pressure and of the ‘disjoining’ pressure 	(h) ≡ −∂h�(h).
The lateral pressure gradient ∇ p is relaxed through a so-called
Poiseuille flow

j = − h3

3η
∇ p, (5)

assuming a constant viscosity η and no slip at the substrate (for
a derivation, see [1] or [30]). Finally, the conservation equation
∂t h = −∇ · j, together with (4) and (5), yields

∂t h = −∇ ·

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− h3

3η
∇

⎡
⎣−σ�h − 	(h)︸ ︷︷ ︸

pressure p

⎤
⎦

︸ ︷︷ ︸
lateral current j

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (6)

Due to the different nature of the two contributions to the
pressure p, it is appropriate to rewrite (6) as

∂t h = −σ

η
∇ ·

(
1

3
h3∇�h

)
+ ∇ · [D(h)∇h] (7)

where

D = − h3

3η

d	

dh
(8)

is the effective diffusion coefficient introduced by Der-
jaguin [13]. The expression of D contributes to the
second-order term of (7) and plays a major role in the
spreading dynamics at mesoscopic thicknesses. In a continuum
representation, it is expedient to approximate the disjoining
pressure 	(h), and hence D(h), with a dominant long-
range contribution, while introducing a phenomenological
boundary condition (effectively a cutoff) in the nanometric
range. Previous studies [1, 4, 30] addressed the case of
	(h) = 1

6π
Ah−3, a single power law accounting for the

cumulated effect of non-retarded van der Waals interactions for
a film of finite thickness h (A being the Hamaker constant).
However, in the case of antagonistically anchored nematic
liquid crystals [15, 16], the dominant term is

	 = 1
2 K δ2h−2, (9)

K being the bend-splay elastic constant and δ the angle by
which the director rotates over the thickness of the film, i.e.,
the difference between the anchoring angles at both interfaces.
Note that we only take into account the elastic energy in the
bulk of the nematic; the anchoring energies (surface terms)
are taken to be constant, i.e., we assume sufficiently strong
anchoring at both interfaces with respect to the thickness of
the film. Thus in our case (8) reduces to

D = K δ2

3η
. (10)

Interestingly, the elastic interaction typical of antagonistically
anchored nematics yields a purely diffusive film in the sense
of Derjaguin. To the best of our knowledge, this remarkable
feature of a thickness-independent diffusion coefficient has not
been emphasized previously.

When describing the spreading droplet as a whole
(as opposed to assimilating the apparent contact line to
a quasistationary hydrodynamic wedge [1, 4, 30]), it is
appropriate to rewrite (7) in a rotationally invariant geometry,
i.e., with h depending only on the distance r to the vertical axis
of the droplet (see figure 1),

∂t h = −σ

η

1

r
∂r

{
1

3
h3r∂r

[
1

r
∂r (r∂r h)

]}
+ D

1

r
∂r (r∂r h). (11)

Here we have used the fact that D is a constant for nematics.

4
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Figure 3. Overview of the results of the numerical resolution of the thin film equation (TFE) with an ‘elastic’ contribution to the disjoining
pressure, i.e., a diffusive second-order term: (a) three consecutive shapes adopted by a droplet of volume V = 2.36 × 10−2 mm3 during a
numerical spreading process (the oblique crosses indicate the points at which the solution h(r, t) falls below ε = 30 nm, which is the
characteristic thickness at the edge of the physical mesoscopic precursor [16]); (b) same experiment: time dependence of the base radius R of
the drop, as estimated directly from the tangent at the inflection point (see figure 1) and also, tentatively, from the volume conservation law
V = π

4 R3θ ; (c) comparative analysis of the estimates of R and θ for the same cross-section snapshots as in (a): the tangent at the inflection
point yields a sensible value for R, but θ does not correspond to an apex-fitting spherical cap, even at t = 1 s.

3.2. Asymptotic spreading behavior

Before we use (11) for quantitative predictions, we can make
an important qualitative remark about the two limiting cases
of the TFE. Looking at the two right-hand side terms of (7)
or (11), for sufficiently tall droplets, the disjoining pressure
	 = 1

2 K δ2h−2 is negligible with respect to the Laplace
pressure over a large part of the droplet (the droplet is well
approximated by a spherical cap as in section 2.1 and the
Laplace pressure is 2σθ/R � 2π[h(r = 0)]2/Vcap). In this
approximation, the TFE is essentially fourth order and has the
form

3η

σ
∂t h = −1

r
∂r

{
h3r∂r

[
1

r
∂r (r∂r h)

]}
. (12)

Looking for self-similar solutions of the form h(r, t) =
t−2α f (t−αr), with the scaling chosen so that V =
2π

∫
h(r, t)r dr remains constant, (12) yields α = 1/10, i.e.,

Tanner’s law [2, 3, 28, 29].
It is also clear that at late stages of spreading, as the

droplet becomes flatter, the Laplace pressure will eventually
be dominated by the disjoining pressure, and the TFE (cf (7)
and (11)) will be essentially second order, governed by the
specific liquid–substrate interactions:

∂t h = 1

r
∂r [r D(h)∂r h]. (13)

In the nematic case, D has the constant expression (10) and an
obvious self-similar solution of (13) is a Gaussian bell defined
by

h(r, t) = V

4π Dt
exp

(
− r 2

4Dt

)
, (14)

with an arbitrary origin for time. The base radius and contact
angle as inferred from the inflection point are R = √

8Dt and
θ = 4V

π
√

e
R−3, so that the volume conservation relationship is

V = √
e π

4 R3θ , as opposed to V = π
4 R3θ for the idealized

Tanner regime.
Thus we see that the spreading process must cross over

from an initial spreading phase, consistent with the generic
Tanner’s law, to another regime, specific to antagonistically
anchored nematic liquid crystals: we shall see in section 4.4
that the characteristic time of the crossover scales as T =
( σ

η
V 3/D5)1/4. The late-time evolution of a droplet is expected

to be diffusive, i.e., measurements of R(t) will yield an
‘acceleration’ from R ∼ t1/10 to ∼t1/2. The remaining
problem is to establish the characteristics of the crossover and
to compare it to the physical experiment.

4. Numerical integration of the TFE: preliminaries

We integrated (11) in the form of a numerical spreading
process, taking snapshots of the solution h(r, t) at preset time
intervals (figure 3(a)). The numerical values used were σ =

5
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Figure 4. Quantitative fit of a physical spreading experiment (cyanobiphenyl 5CB on silicon wafer) in terms of the numerical spreading
process presented in figure 3: the volume V and viscosity η act as scaling parameters of the maximal solution obtained previously (see text).
(a) Illustrates the optically measured radii R30 nm (at the edge of the mesoscopic precursor) and R300 nm (corresponding to the second of a
series of interference fringes), as well as the optically measured estimate of the contact angle θaveraged (averaged over 25 fringes). Clearly
Rinflection < R300 nm < R30 nm and θinflection > θaveraged. (b) Illustrates the good agreement for R30 nm and R300 nm. (c) Compares estimates of the
contact angle, with a satisfactory agreement at late spreading times, and a discrepancy at early spreading times.

30 × 10−3 N m−1, η = 30 × 10−3 Pa s and K δ2 = 12 ×
10−12 J m−1 (i.e., D = 2.67 × 10−10 m2 s−1). As for the
boundary conditions, below h = 1 Å we extrapolate h(r, t)
as an exponential tail (similar to a ‘maximal film’ [1, 4, 30])
and ensure that the total volume V = 2π

∫
h(r, t)r dr is

preserved: in figure 3, V = 2.36×10−2 mm3. As for the initial
conditions, we start with a perfect parabolic cap, to which we
add a moderately smooth foot to avoid a computationally heavy
singularity. Integration is explicit in time, with a fixed-size grid
for r and an adaptive time step.

Figure 3(b) plots the spreading versus time in terms of
the base radius R and contact angle θ , as inferred from
the inflection point of h(r, t) (see figures 1 and 3(c)). The
volume of the numerical droplet is similar to the physical
experiment [16], as well as the characteristics σ = 30 ×
10−3 N m−1, η = 30×10−3 Pa s and K δ2 = 12×10−12 J m−1.
The acceleration agrees qualitatively with figure 2 (cf figure 5
in [16]): the crossover from the Tanner phase to significantly
faster regimes occurs at times of the order of a minute, for
a droplet of the same ‘caliber’ as in [16] (R � 1 mm at
t = 1 s); a characteristic time of the crossover corresponds
to the intersection of the asymptotes in figure 3(b), at t � 700 s
(about 12 min).

Before comparing quantitatively the physical spreading
experiment with our numerical resolution of the TFE, we shall

voice a few words of caution about the applicability of the
TFM. We shall also review the physical observables available
to us. Finally, we shall discuss the issue of time origin in
spreading experiments and the scaling feature of equation (11).

4.1. TFM applicability

The oblique crosses on figures 3(a) and (c) indicate the points at
which the solution h(r, t) falls below ε = 30 nm, which is the
characteristic thickness at the edge of the physical mesoscopic
precursor [16]. For t = 2000 s (dash–dotted profile), h(r =
0) � 100ε, thus the maximal solution h(r, t = 2000 s), as a
continuum construct, is at the limit of physical relevance. We
also note that the experimentally observed spreading dynamics
of a similar 5CB droplet typically stop after an hour, with R
of the order of tens of millimeters (which corresponds to a
pancake of volume V � 10−2 mm3 and thickness 30 nm).
This behavior is due to short-range interactions which promote
dewetting, and cannot be captured by the TFE (11) unless the
expression (9) is refined. However, we do expect the TFE to
capture the relevant properties of the contact line region as
observed experimentally by Cazabat et al [15, 16], provided
that the 30 nm thickness plays the role of a cutoff, located in the
asymptotic region of h(r, t) as is still the case for t = 2000 s
on figures 3(a) and (c).

6
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4.2. Review of the observables

Figure 3(c) makes it clear that the crossover from Tanner’s
law to a faster regime (at times of the order of a minute to
an hour) coincides with a gradually lesser separation between
the macroscopic and mesoscopic scales. In other terms, the
extent of the mesoscopic ‘foot’ of the drop as compared to
the macroscopic ‘cap’ is such that the apparent contact line
is ill defined. Another, somewhat unexpected fact shown by
figure 3(c) is that measuring the contact angle θinflection(t) at the
(mesoscopic) inflection point of h(r, t) does not give a good
estimate of θ for the (macroscopic) apex-fitting spherical cap,
even in the Tanner phase (at t = 1 s) and despite a seemingly
good separation of the scales. This observation, however,
does not challenge our study, provided that we complement R,
θ , Rinflection and θinflection with additional observables that are
consistent with those measured by Cazabat et al [15, 16].

As a matter of fact, the optical measurements in [15, 16] do
not infer R and θ from the inflection point, which would have
required a thorough reconstruction of the profile at the contact
line for each snapshot. It was more expedient to track the edge
of the spreading drop (located at an approximate thickness
of 30 nm; we shall note this radius R30 nm) or the second
interference fringe of the ordinary–extraordinary coincidence
pattern (at a thickness of about 300 nm; we shall note this
thickness R300 nm). As for the contact angle, the slope at
the contact line was averaged over the first 25 interfringes
of the same pattern (between 300 nm and 5.3 μm). The
numerical counterparts to these observable characteristics are
presented in figure 4(a), on a representative snapshot of the
numerical spreading process. We note that the interference
pattern used here is specific to nematics: the fringes correspond
to coincidence between the ordinary and extraordinary rays,
and the interfringe is about 11 times larger than for the normal
equal-thickness fringes.

4.3. Time origin of spreading processes

Both physical and numerical spreading processes can be seen
as subject to initial conditions such as the deposit of a
drop. Typically, shortly after a sufficiently compact deposit,
flow patterns appear at the edge of the drop and propagate
throughout the initially static droplet, establishing Tanner’s
regime; at later times, the spreading crosses over to, e.g.,
a diffusive phase (for nematic droplets with antagonistic
anchoring, as considered in this paper; cf figure 3(b)).

The physically relevant deposit is closely related to the
subtle issue of choosing a time origin (t = 0). On one hand,
the exact history of the deposit has no effect at the scale of
the long spreading process. On the other hand, the power law
behavior typically observed in spreading is best represented in
log–log diagrams (figures 2, 3(b), (c), 4(b), (c)), which are
quite sensitive to the origin of t at small spreading times.

Thanks to the robust presence of a Tanner stage at
early spreading times, the dilemma is customarily resolved
by describing the spreading in terms of the time elapsed
since the effective origin of the Tanner phase: practically,
for a sufficiently compact deposit, the origin of t is slightly
adjusted so that, e.g., R(t) is well fit by a t1/10 power law

at early spreading times. This may seem arbitrary but is in
fact fundamental in the sense that for increasingly compact
deposits of a given volume V the spreading processes converge
towards a well-defined limiting process, which (at least in the
framework of thin film dynamics) precisely corresponds to
a backwards extrapolation of Tanner’s law. This convention
is adopted for both the physical and numerical spreading
processes presented in this paper.

4.4. Scaling

A prominent feature of the model TFE (11) is that the equation
can be scaled in terms of h, r and t (which corresponds to three
degrees of freedom on σ , η, D and V ). If we know a function
h0(r, t) that is a solution of

∂t h0 = −σ0

η0

1

r
∂r

{
1

3
h3

0r∂r

[
1

r
∂r (r∂r h0)

]}
+ D0

1

r
∂r (r∂r h0)

(15)
bearing the volume V0 = 2π

∫ ∞
0 h(r, t)r dr , then we can

define

k ≡ (V/V0)
1/8 (16)

m ≡
(

σ0ηD

ση0 D0

)1/8

(17)

n ≡
(

σ0ηD5

ση0 D5
0

)1/4

(18)

and obtain a similar function h(r, t) = k2m2h0(k−3mr, k−6nt)
which is a solution of (11) with volume V .

In the work presented here, besides the obvious fitting in
terms of the volume V via k = (V/V0)

1/8, we assumed that
the surface tension σ and the elastic coefficient K δ2 were not
significantly different from the values σ = 30 × 10−3 N m−1

and K δ2 = 12 × 10−12 J m−1. We allowed, however, for
an adjustment in terms of the effective viscosity η, whereby
m = 1 and n = η0/η. Indeed, the rheology of a nematic film
with antagonistic anchoring conditions is not as trivial as the
Poiseuille flow in our model TFE: the effective viscosity must
be intermediate between that of flow-aligned 5CB molecules
(30 ×10−3 Pa s) and that of flow-orthogonal molecules (100×
10−3 Pa s) [20, 21]. This also affects the value of the effective
diffusion coefficient D = K δ2

3η
. The results of the fit are

η = 70.5 × 10−3 Pa s, D = 1.136 × 10−10 m2 s−1 and
V = 1.236 × 10−1mm3.

From the scaling factors k and n we conclude that the
‘characteristic time’ of the crossover for the TFE (11) scales
as T = ( σ

η
V 3/D5)1/4. For the numerical values yielded by

the fit we have T � 8 × 104 s (about 22 h), which exceeds
by far the duration of the physical experiment (2 h). From the
intersection of the asymptotes on figure 3(b) (at t � 700 s) and
the values k = 1.23 and n = 0.425 we can extract a more
quantitatively relevant time T = 5.7 × 103 s, i.e., a couple of
hours rather than a day. Both values are consistent with the fact
that the crossover to a diffusive spreading process is far from
complete at the end of the observation in [16].
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5. Comparison of physical and numerical spreading
processes

We shall now perform a quantitative matching between the
physical and numerical spreading processes. We adjusted the
scaling of the numerical solution to accommodate the physical
experiment, shifting the volume to V = 1.236×10−1 mm3 and
the viscosity to η = 7.05 × 10−2 Pa s. Then, for this rescaled
numerical experiment, we measured the same quantities as
observed optically, namely R30 nm, R100 nm and θaveraged (see
figure 4(a)). The results are presented in figures 4(b) and (c).

The best agreement was obtained for R30 nm, over the
whole range where the two experiments overlap. As for the
measurements based on interference patterns, the agreement
is less consistent. On one hand (figure 4(b)), the radius
R300 nm of the second interference fringe agrees well with
its numerical estimate. On the other hand (figure 3(c)), at
small spreading times the numerical θaverage is in excess of the
optically observed slope averaged over the first 25 interfringes.
The latter discrepancy may be due either to the low resolution
of the fringes at early spreading times or to our failure to
capture complex shear-thinning effects in the framework of the
TFM.

Although the agreement is quite satisfactory for the R30 nm

observable, we must note that the numerical estimate of R30 nm

is at the limit of applicability of the TFM. In our model we
simply cut off the maximal solution of the TFE at the thickness
h = 30 nm, and the dynamics of this cutoff line may differ
from the actual dynamics of the mesoscopic precursor near
the microscopic contact line. It would be more conclusive if
the physical experiment had systematically provided the more
robust observables Rinflection and θinflection.

6. Conclusion

We have attempted an explanation of the abnormal spreading
properties observed for small droplets of 5CB nematic liquid
crystals [15, 16] in the framework of the thin film model.
This approach enabled us to illustrate both qualitatively and
quantitatively the key trends in the spreading of nematic
droplets.

• The development of a large ‘foot’ (mesoscopic precursor),
whereby the macroscopic and mesoscopic length scales
are no longer well-separated.

• The transition towards a faster spreading regime—
determined by the antagonistic anchoring of the nematic at
the interfaces—in which the thickness profile is essentially
governed by a diffusion equation.

The ‘acceleration’, initially observed optically by Cazabat et al
[15, 16], was reproduced in a numerical spreading process
(figure 3), which was used to fit the optical data (figure 2). The
primary optical observable being the edge of the mesoscopic
precursor, the agreement is satisfactory (figure 4(b)).

We note that this post-Tanner regime is a priori not
specific to nematic droplets. Similar crossovers to faster
spreading laws than R ∼ t1/10 may be observed for regular
liquids dominated by van der Waals forces, although perhaps

not as readily as in the present case, where the spreading is
driven by elasticity. The fundamental result is that, for long-
range substrate interactions, the droplet essentially becomes a
diffusive film in the sense of Derjaguin [13] at late spreading
times, and Tanner’s law is gradually replaced with another
law, determined by the substrate interaction rather than by
capillarity.

The work presented is a necessary complement to the
quasistationary energetic approach as presented in [17], where
acceleration is interpreted in terms of a dynamic, negative line
tension τ attributed to the apparent contact line (see figure 1).
The latter framework is applicable if the macroscopic and
mesoscopic length scales remain well-separated, i.e., if the
bulk of the droplet is well approximated by a spherical cap,
and if both the vertical and lateral size of the mesoscopic
region remain negligible. In this case, it is possible to isolate
a line contribution, which resides in the mesoscopic ‘foot’,
yet contributes to spreading dynamics at the macroscopic
scale. However, as the droplet spreads, it eventually adopts
a characteristic bell shape, and the capillarity-dominated
spherical cap ceases to be a good approximation. At even
later stages, the droplet may reach the state of a mesoscopic
pancake, which cannot be resolved by the macroscopic model
at all, unless the dimension is lowered to a planar geometry.

By contrast, the thin film model appears to be a more
robust description of complete wetting situations, especially
in the late stages of spreading. In order to account for
the emergence of pancakes, we aim to provide the thin film
equation with suitable boundary conditions that would account
for the phenomenology of the microscopic contact line. As
a prospect of future work, we also note that our current
implementation of the thin film model does not accurately
describe the non-Newtonian rheology of antagonistically
anchored nematics. In future studies we may refine the notion
of effective viscosity and allow for a more accurate modeling
of the spreading dynamics.
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